src/demux/tsdemuxer.js
/**
* highly optimized TS demuxer:
* parse PAT, PMT
* extract PES packet from audio and video PIDs
* extract AVC/H264 NAL units and AAC/ADTS samples from PES packet
* trigger the remuxer upon parsing completion
* it also tries to workaround as best as it can audio codec switch (HE-AAC to AAC and vice versa), without having to restart the MediaSource.
* it also controls the remuxing process :
* upon discontinuity or level switch detection, it will also notifies the remuxer so that it can reset its state.
*/
import * as ADTS from './adts';
import MpegAudio from './mpegaudio';
import Event from '../events';
import ExpGolomb from './exp-golomb';
import SampleAesDecrypter from './sample-aes';
// import Hex from '../utils/hex';
import { logger } from '../utils/logger';
import { ErrorTypes, ErrorDetails } from '../errors';
import { utf8ArrayToStr } from './id3';
// We are using fixed track IDs for driving the MP4 remuxer
// instead of following the TS PIDs.
// There is no reason not to do this and some browsers/SourceBuffer-demuxers
// may not like if there are TrackID "switches"
// See https://github.com/video-dev/hls.js/issues/1331
// Here we are mapping our internal track types to constant MP4 track IDs
// With MSE currently one can only have one track of each, and we are muxing
// whatever video/audio rendition in them.
const RemuxerTrackIdConfig = {
video: 1,
audio: 2,
id3: 3,
text: 4
};
class TSDemuxer {
constructor (observer, remuxer, config, typeSupported) {
this.observer = observer;
this.config = config;
this.typeSupported = typeSupported;
this.remuxer = remuxer;
this.sampleAes = null;
}
setDecryptData (decryptdata) {
if ((decryptdata != null) && (decryptdata.key != null) && (decryptdata.method === 'SAMPLE-AES')) {
this.sampleAes = new SampleAesDecrypter(this.observer, this.config, decryptdata, this.discardEPB);
} else {
this.sampleAes = null;
}
}
static probe (data) {
const syncOffset = TSDemuxer._syncOffset(data);
if (syncOffset < 0) {
return false;
} else {
if (syncOffset) {
logger.warn(`MPEG2-TS detected but first sync word found @ offset ${syncOffset}, junk ahead ?`);
}
return true;
}
}
static _syncOffset (data) {
// scan 1000 first bytes
const scanwindow = Math.min(1000, data.length - 3 * 188);
let i = 0;
while (i < scanwindow) {
// a TS fragment should contain at least 3 TS packets, a PAT, a PMT, and one PID, each starting with 0x47
if (data[i] === 0x47 && data[i + 188] === 0x47 && data[i + 2 * 188] === 0x47) {
return i;
} else {
i++;
}
}
return -1;
}
/**
* Creates a track model internal to demuxer used to drive remuxing input
*
* @param {string} type 'audio' | 'video' | 'id3' | 'text'
* @param {number} duration
* @return {object} TSDemuxer's internal track model
*/
static createTrack (type, duration) {
return {
container: type === 'video' || type === 'audio' ? 'video/mp2t' : undefined,
type,
id: RemuxerTrackIdConfig[type],
pid: -1,
inputTimeScale: 90000,
sequenceNumber: 0,
samples: [],
dropped: type === 'video' ? 0 : undefined,
isAAC: type === 'audio' ? true : undefined,
duration: type === 'audio' ? duration : undefined
};
}
/**
* Initializes a new init segment on the demuxer/remuxer interface. Needed for discontinuities/track-switches (or at stream start)
* Resets all internal track instances of the demuxer.
*
* @override Implements generic demuxing/remuxing interface (see DemuxerInline)
* @param {object} initSegment
* @param {string} audioCodec
* @param {string} videoCodec
* @param {number} duration (in TS timescale = 90kHz)
*/
resetInitSegment (initSegment, audioCodec, videoCodec, duration) {
this.pmtParsed = false;
this._pmtId = -1;
this._avcTrack = TSDemuxer.createTrack('video', duration);
this._audioTrack = TSDemuxer.createTrack('audio', duration);
this._id3Track = TSDemuxer.createTrack('id3', duration);
this._txtTrack = TSDemuxer.createTrack('text', duration);
// flush any partial content
this.aacOverFlow = null;
this.aacLastPTS = null;
this.avcSample = null;
this.audioCodec = audioCodec;
this.videoCodec = videoCodec;
this._duration = duration;
}
/**
*
* @override
*/
resetTimeStamp () {}
// feed incoming data to the front of the parsing pipeline
append (data, timeOffset, contiguous, accurateTimeOffset) {
let start, len = data.length, stt, pid, atf, offset, pes,
unknownPIDs = false;
this.contiguous = contiguous;
let pmtParsed = this.pmtParsed,
avcTrack = this._avcTrack,
audioTrack = this._audioTrack,
id3Track = this._id3Track,
avcId = avcTrack.pid,
audioId = audioTrack.pid,
id3Id = id3Track.pid,
pmtId = this._pmtId,
avcData = avcTrack.pesData,
audioData = audioTrack.pesData,
id3Data = id3Track.pesData,
parsePAT = this._parsePAT,
parsePMT = this._parsePMT,
parsePES = this._parsePES,
parseAVCPES = this._parseAVCPES.bind(this),
parseAACPES = this._parseAACPES.bind(this),
parseMPEGPES = this._parseMPEGPES.bind(this),
parseID3PES = this._parseID3PES.bind(this);
const syncOffset = TSDemuxer._syncOffset(data);
// don't parse last TS packet if incomplete
len -= (len + syncOffset) % 188;
// loop through TS packets
for (start = syncOffset; start < len; start += 188) {
if (data[start] === 0x47) {
stt = !!(data[start + 1] & 0x40);
// pid is a 13-bit field starting at the last bit of TS[1]
pid = ((data[start + 1] & 0x1f) << 8) + data[start + 2];
atf = (data[start + 3] & 0x30) >> 4;
// if an adaption field is present, its length is specified by the fifth byte of the TS packet header.
if (atf > 1) {
offset = start + 5 + data[start + 4];
// continue if there is only adaptation field
if (offset === (start + 188)) {
continue;
}
} else {
offset = start + 4;
}
switch (pid) {
case avcId:
if (stt) {
if (avcData && (pes = parsePES(avcData))) {
parseAVCPES(pes, false);
}
avcData = { data: [], size: 0 };
}
if (avcData) {
avcData.data.push(data.subarray(offset, start + 188));
avcData.size += start + 188 - offset;
}
break;
case audioId:
if (stt) {
if (audioData && (pes = parsePES(audioData))) {
if (audioTrack.isAAC) {
parseAACPES(pes);
} else {
parseMPEGPES(pes);
}
}
audioData = { data: [], size: 0 };
}
if (audioData) {
audioData.data.push(data.subarray(offset, start + 188));
audioData.size += start + 188 - offset;
}
break;
case id3Id:
if (stt) {
if (id3Data && (pes = parsePES(id3Data))) {
parseID3PES(pes);
}
id3Data = { data: [], size: 0 };
}
if (id3Data) {
id3Data.data.push(data.subarray(offset, start + 188));
id3Data.size += start + 188 - offset;
}
break;
case 0:
if (stt) {
offset += data[offset] + 1;
}
pmtId = this._pmtId = parsePAT(data, offset);
break;
case pmtId:
if (stt) {
offset += data[offset] + 1;
}
let parsedPIDs = parsePMT(data, offset, this.typeSupported.mpeg === true || this.typeSupported.mp3 === true, this.sampleAes != null);
// only update track id if track PID found while parsing PMT
// this is to avoid resetting the PID to -1 in case
// track PID transiently disappears from the stream
// this could happen in case of transient missing audio samples for example
// NOTE this is only the PID of the track as found in TS,
// but we are not using this for MP4 track IDs.
avcId = parsedPIDs.avc;
if (avcId > 0) {
avcTrack.pid = avcId;
}
audioId = parsedPIDs.audio;
if (audioId > 0) {
audioTrack.pid = audioId;
audioTrack.isAAC = parsedPIDs.isAAC;
}
id3Id = parsedPIDs.id3;
if (id3Id > 0) {
id3Track.pid = id3Id;
}
if (unknownPIDs && !pmtParsed) {
logger.log('reparse from beginning');
unknownPIDs = false;
// we set it to -188, the += 188 in the for loop will reset start to 0
start = syncOffset - 188;
}
pmtParsed = this.pmtParsed = true;
break;
case 17:
case 0x1fff:
break;
default:
unknownPIDs = true;
break;
}
} else {
this.observer.trigger(Event.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_PARSING_ERROR, fatal: false, reason: 'TS packet did not start with 0x47' });
}
}
// try to parse last PES packets
if (avcData && (pes = parsePES(avcData))) {
parseAVCPES(pes, true);
avcTrack.pesData = null;
} else {
// either avcData null or PES truncated, keep it for next frag parsing
avcTrack.pesData = avcData;
}
if (audioData && (pes = parsePES(audioData))) {
if (audioTrack.isAAC) {
parseAACPES(pes);
} else {
parseMPEGPES(pes);
}
audioTrack.pesData = null;
} else {
if (audioData && audioData.size) {
logger.log('last AAC PES packet truncated,might overlap between fragments');
}
// either audioData null or PES truncated, keep it for next frag parsing
audioTrack.pesData = audioData;
}
if (id3Data && (pes = parsePES(id3Data))) {
parseID3PES(pes);
id3Track.pesData = null;
} else {
// either id3Data null or PES truncated, keep it for next frag parsing
id3Track.pesData = id3Data;
}
if (this.sampleAes == null) {
this.remuxer.remux(audioTrack, avcTrack, id3Track, this._txtTrack, timeOffset, contiguous, accurateTimeOffset);
} else {
this.decryptAndRemux(audioTrack, avcTrack, id3Track, this._txtTrack, timeOffset, contiguous, accurateTimeOffset);
}
}
decryptAndRemux (audioTrack, videoTrack, id3Track, textTrack, timeOffset, contiguous, accurateTimeOffset) {
if (audioTrack.samples && audioTrack.isAAC) {
let localthis = this;
this.sampleAes.decryptAacSamples(audioTrack.samples, 0, function () {
localthis.decryptAndRemuxAvc(audioTrack, videoTrack, id3Track, textTrack, timeOffset, contiguous, accurateTimeOffset);
});
} else {
this.decryptAndRemuxAvc(audioTrack, videoTrack, id3Track, textTrack, timeOffset, contiguous, accurateTimeOffset);
}
}
decryptAndRemuxAvc (audioTrack, videoTrack, id3Track, textTrack, timeOffset, contiguous, accurateTimeOffset) {
if (videoTrack.samples) {
let localthis = this;
this.sampleAes.decryptAvcSamples(videoTrack.samples, 0, 0, function () {
localthis.remuxer.remux(audioTrack, videoTrack, id3Track, textTrack, timeOffset, contiguous, accurateTimeOffset);
});
} else {
this.remuxer.remux(audioTrack, videoTrack, id3Track, textTrack, timeOffset, contiguous, accurateTimeOffset);
}
}
destroy () {
this._initPTS = this._initDTS = undefined;
this._duration = 0;
}
_parsePAT (data, offset) {
// skip the PSI header and parse the first PMT entry
return (data[offset + 10] & 0x1F) << 8 | data[offset + 11];
// logger.log('PMT PID:' + this._pmtId);
}
_parsePMT (data, offset, mpegSupported, isSampleAes) {
let sectionLength, tableEnd, programInfoLength, pid, result = { audio: -1, avc: -1, id3: -1, isAAC: true };
sectionLength = (data[offset + 1] & 0x0f) << 8 | data[offset + 2];
tableEnd = offset + 3 + sectionLength - 4;
// to determine where the table is, we have to figure out how
// long the program info descriptors are
programInfoLength = (data[offset + 10] & 0x0f) << 8 | data[offset + 11];
// advance the offset to the first entry in the mapping table
offset += 12 + programInfoLength;
while (offset < tableEnd) {
pid = (data[offset + 1] & 0x1F) << 8 | data[offset + 2];
switch (data[offset]) {
case 0xcf: // SAMPLE-AES AAC
if (!isSampleAes) {
logger.log('unknown stream type:' + data[offset]);
break;
}
/* falls through */
// ISO/IEC 13818-7 ADTS AAC (MPEG-2 lower bit-rate audio)
case 0x0f:
// logger.log('AAC PID:' + pid);
if (result.audio === -1) {
result.audio = pid;
}
break;
// Packetized metadata (ID3)
case 0x15:
// logger.log('ID3 PID:' + pid);
if (result.id3 === -1) {
result.id3 = pid;
}
break;
case 0xdb: // SAMPLE-AES AVC
if (!isSampleAes) {
logger.log('unknown stream type:' + data[offset]);
break;
}
/* falls through */
// ITU-T Rec. H.264 and ISO/IEC 14496-10 (lower bit-rate video)
case 0x1b:
// logger.log('AVC PID:' + pid);
if (result.avc === -1) {
result.avc = pid;
}
break;
// ISO/IEC 11172-3 (MPEG-1 audio)
// or ISO/IEC 13818-3 (MPEG-2 halved sample rate audio)
case 0x03:
case 0x04:
// logger.log('MPEG PID:' + pid);
if (!mpegSupported) {
logger.log('MPEG audio found, not supported in this browser for now');
} else if (result.audio === -1) {
result.audio = pid;
result.isAAC = false;
}
break;
case 0x24:
logger.warn('HEVC stream type found, not supported for now');
break;
default:
logger.log('unknown stream type:' + data[offset]);
break;
}
// move to the next table entry
// skip past the elementary stream descriptors, if present
offset += ((data[offset + 3] & 0x0F) << 8 | data[offset + 4]) + 5;
}
return result;
}
_parsePES (stream) {
let i = 0, frag, pesFlags, pesPrefix, pesLen, pesHdrLen, pesData, pesPts, pesDts, payloadStartOffset, data = stream.data;
// safety check
if (!stream || stream.size === 0) {
return null;
}
// we might need up to 19 bytes to read PES header
// if first chunk of data is less than 19 bytes, let's merge it with following ones until we get 19 bytes
// usually only one merge is needed (and this is rare ...)
while (data[0].length < 19 && data.length > 1) {
let newData = new Uint8Array(data[0].length + data[1].length);
newData.set(data[0]);
newData.set(data[1], data[0].length);
data[0] = newData;
data.splice(1, 1);
}
// retrieve PTS/DTS from first fragment
frag = data[0];
pesPrefix = (frag[0] << 16) + (frag[1] << 8) + frag[2];
if (pesPrefix === 1) {
pesLen = (frag[4] << 8) + frag[5];
// if PES parsed length is not zero and greater than total received length, stop parsing. PES might be truncated
// minus 6 : PES header size
if (pesLen && pesLen > stream.size - 6) {
return null;
}
pesFlags = frag[7];
if (pesFlags & 0xC0) {
/* PES header described here : http://dvd.sourceforge.net/dvdinfo/pes-hdr.html
as PTS / DTS is 33 bit we cannot use bitwise operator in JS,
as Bitwise operators treat their operands as a sequence of 32 bits */
pesPts = (frag[9] & 0x0E) * 536870912 +// 1 << 29
(frag[10] & 0xFF) * 4194304 +// 1 << 22
(frag[11] & 0xFE) * 16384 +// 1 << 14
(frag[12] & 0xFF) * 128 +// 1 << 7
(frag[13] & 0xFE) / 2;
// check if greater than 2^32 -1
if (pesPts > 4294967295) {
// decrement 2^33
pesPts -= 8589934592;
}
if (pesFlags & 0x40) {
pesDts = (frag[14] & 0x0E) * 536870912 +// 1 << 29
(frag[15] & 0xFF) * 4194304 +// 1 << 22
(frag[16] & 0xFE) * 16384 +// 1 << 14
(frag[17] & 0xFF) * 128 +// 1 << 7
(frag[18] & 0xFE) / 2;
// check if greater than 2^32 -1
if (pesDts > 4294967295) {
// decrement 2^33
pesDts -= 8589934592;
}
if (pesPts - pesDts > 60 * 90000) {
logger.warn(`${Math.round((pesPts - pesDts) / 90000)}s delta between PTS and DTS, align them`);
pesPts = pesDts;
}
} else {
pesDts = pesPts;
}
}
pesHdrLen = frag[8];
// 9 bytes : 6 bytes for PES header + 3 bytes for PES extension
payloadStartOffset = pesHdrLen + 9;
if (stream.size <= payloadStartOffset) {
return null;
}
stream.size -= payloadStartOffset;
// reassemble PES packet
pesData = new Uint8Array(stream.size);
for (let j = 0, dataLen = data.length; j < dataLen; j++) {
frag = data[j];
let len = frag.byteLength;
if (payloadStartOffset) {
if (payloadStartOffset > len) {
// trim full frag if PES header bigger than frag
payloadStartOffset -= len;
continue;
} else {
// trim partial frag if PES header smaller than frag
frag = frag.subarray(payloadStartOffset);
len -= payloadStartOffset;
payloadStartOffset = 0;
}
}
pesData.set(frag, i);
i += len;
}
if (pesLen) {
// payload size : remove PES header + PES extension
pesLen -= pesHdrLen + 3;
}
return { data: pesData, pts: pesPts, dts: pesDts, len: pesLen };
} else {
return null;
}
}
pushAccesUnit (avcSample, avcTrack) {
if (avcSample.units.length && avcSample.frame) {
const samples = avcTrack.samples;
const nbSamples = samples.length;
// if sample does not have PTS/DTS, patch with last sample PTS/DTS
if (isNaN(avcSample.pts)) {
if (nbSamples) {
const lastSample = samples[nbSamples - 1];
avcSample.pts = lastSample.pts;
avcSample.dts = lastSample.dts;
} else {
// dropping samples, no timestamp found
avcTrack.dropped++;
return;
}
}
// only push AVC sample if starting with a keyframe is not mandatory OR
// if keyframe already found in this fragment OR
// keyframe found in last fragment (track.sps) AND
// samples already appended (we already found a keyframe in this fragment) OR fragment is contiguous
if (!this.config.forceKeyFrameOnDiscontinuity ||
avcSample.key === true ||
(avcTrack.sps && (nbSamples || this.contiguous))) {
avcSample.id = nbSamples;
samples.push(avcSample);
} else {
// dropped samples, track it
avcTrack.dropped++;
}
}
if (avcSample.debug.length) {
logger.log(avcSample.pts + '/' + avcSample.dts + ':' + avcSample.debug);
}
}
_parseAVCPES (pes, last) {
// logger.log('parse new PES');
let track = this._avcTrack,
units = this._parseAVCNALu(pes.data),
debug = false,
expGolombDecoder,
avcSample = this.avcSample,
push,
spsfound = false,
i,
pushAccesUnit = this.pushAccesUnit.bind(this),
createAVCSample = function (key, pts, dts, debug) {
return { key: key, pts: pts, dts: dts, units: [], debug: debug };
};
// free pes.data to save up some memory
pes.data = null;
// if new NAL units found and last sample still there, let's push ...
// this helps parsing streams with missing AUD (only do this if AUD never found)
if (avcSample && units.length && !track.audFound) {
pushAccesUnit(avcSample, track);
avcSample = this.avcSample = createAVCSample(false, pes.pts, pes.dts, '');
}
units.forEach(unit => {
switch (unit.type) {
// NDR
case 1:
push = true;
if (!avcSample) {
avcSample = this.avcSample = createAVCSample(true, pes.pts, pes.dts, '');
}
if (debug) {
avcSample.debug += 'NDR ';
}
avcSample.frame = true;
let data = unit.data;
// only check slice type to detect KF in case SPS found in same packet (any keyframe is preceded by SPS ...)
if (spsfound && data.length > 4) {
// retrieve slice type by parsing beginning of NAL unit (follow H264 spec, slice_header definition) to detect keyframe embedded in NDR
let sliceType = new ExpGolomb(data).readSliceType();
// 2 : I slice, 4 : SI slice, 7 : I slice, 9: SI slice
// SI slice : A slice that is coded using intra prediction only and using quantisation of the prediction samples.
// An SI slice can be coded such that its decoded samples can be constructed identically to an SP slice.
// I slice: A slice that is not an SI slice that is decoded using intra prediction only.
// if (sliceType === 2 || sliceType === 7) {
if (sliceType === 2 || sliceType === 4 || sliceType === 7 || sliceType === 9) {
avcSample.key = true;
}
}
break;
// IDR
case 5:
push = true;
// handle PES not starting with AUD
if (!avcSample) {
avcSample = this.avcSample = createAVCSample(true, pes.pts, pes.dts, '');
}
if (debug) {
avcSample.debug += 'IDR ';
}
avcSample.key = true;
avcSample.frame = true;
break;
// SEI
case 6:
push = true;
if (debug && avcSample) {
avcSample.debug += 'SEI ';
}
expGolombDecoder = new ExpGolomb(this.discardEPB(unit.data));
// skip frameType
expGolombDecoder.readUByte();
var payloadType = 0;
var payloadSize = 0;
var endOfCaptions = false;
var b = 0;
while (!endOfCaptions && expGolombDecoder.bytesAvailable > 1) {
payloadType = 0;
do {
b = expGolombDecoder.readUByte();
payloadType += b;
} while (b === 0xFF);
// Parse payload size.
payloadSize = 0;
do {
b = expGolombDecoder.readUByte();
payloadSize += b;
} while (b === 0xFF);
// TODO: there can be more than one payload in an SEI packet...
// TODO: need to read type and size in a while loop to get them all
if (payloadType === 4 && expGolombDecoder.bytesAvailable !== 0) {
endOfCaptions = true;
let countryCode = expGolombDecoder.readUByte();
if (countryCode === 181) {
let providerCode = expGolombDecoder.readUShort();
if (providerCode === 49) {
let userStructure = expGolombDecoder.readUInt();
if (userStructure === 0x47413934) {
let userDataType = expGolombDecoder.readUByte();
// Raw CEA-608 bytes wrapped in CEA-708 packet
if (userDataType === 3) {
let firstByte = expGolombDecoder.readUByte();
let secondByte = expGolombDecoder.readUByte();
let totalCCs = 31 & firstByte;
let byteArray = [firstByte, secondByte];
for (i = 0; i < totalCCs; i++) {
// 3 bytes per CC
byteArray.push(expGolombDecoder.readUByte());
byteArray.push(expGolombDecoder.readUByte());
byteArray.push(expGolombDecoder.readUByte());
}
this._insertSampleInOrder(this._txtTrack.samples, { type: 3, pts: pes.pts, bytes: byteArray });
}
}
}
}
} else if (payloadType === 5 && expGolombDecoder.bytesAvailable !== 0) {
endOfCaptions = true;
if (payloadSize > 16) {
const uuidStrArray = [];
for (i = 0; i < 16; i++) {
uuidStrArray.push(expGolombDecoder.readUByte().toString(16));
if (i === 3 || i === 5 || i === 7 || i === 9) {
uuidStrArray.push('-');
}
}
const length = payloadSize - 16;
const userDataPayloadBytes = new Uint8Array(length);
for (i = 0; i < length; i++) {
userDataPayloadBytes[i] = expGolombDecoder.readUByte();
}
this._insertSampleInOrder(this._txtTrack.samples, {
pts: pes.pts,
payloadType: payloadType,
uuid: uuidStrArray.join(''),
userDataBytes: userDataPayloadBytes,
userData: utf8ArrayToStr(userDataPayloadBytes.buffer)
});
}
} else if (payloadSize < expGolombDecoder.bytesAvailable) {
for (i = 0; i < payloadSize; i++) {
expGolombDecoder.readUByte();
}
}
}
break;
// SPS
case 7:
push = true;
spsfound = true;
if (debug && avcSample) {
avcSample.debug += 'SPS ';
}
if (!track.sps) {
expGolombDecoder = new ExpGolomb(unit.data);
let config = expGolombDecoder.readSPS();
track.width = config.width;
track.height = config.height;
track.pixelRatio = config.pixelRatio;
track.sps = [unit.data];
track.duration = this._duration;
let codecarray = unit.data.subarray(1, 4);
let codecstring = 'avc1.';
for (i = 0; i < 3; i++) {
let h = codecarray[i].toString(16);
if (h.length < 2) {
h = '0' + h;
}
codecstring += h;
}
track.codec = codecstring;
}
break;
// PPS
case 8:
push = true;
if (debug && avcSample) {
avcSample.debug += 'PPS ';
}
if (!track.pps) {
track.pps = [unit.data];
}
break;
// AUD
case 9:
push = false;
track.audFound = true;
if (avcSample) {
pushAccesUnit(avcSample, track);
}
avcSample = this.avcSample = createAVCSample(false, pes.pts, pes.dts, debug ? 'AUD ' : '');
break;
// Filler Data
case 12:
push = false;
break;
default:
push = false;
if (avcSample) {
avcSample.debug += 'unknown NAL ' + unit.type + ' ';
}
break;
}
if (avcSample && push) {
let units = avcSample.units;
units.push(unit);
}
});
// if last PES packet, push samples
if (last && avcSample) {
pushAccesUnit(avcSample, track);
this.avcSample = null;
}
}
_insertSampleInOrder (arr, data) {
let len = arr.length;
if (len > 0) {
if (data.pts >= arr[len - 1].pts) {
arr.push(data);
} else {
for (let pos = len - 1; pos >= 0; pos--) {
if (data.pts < arr[pos].pts) {
arr.splice(pos, 0, data);
break;
}
}
}
} else {
arr.push(data);
}
}
_getLastNalUnit () {
let avcSample = this.avcSample, lastUnit;
// try to fallback to previous sample if current one is empty
if (!avcSample || avcSample.units.length === 0) {
let track = this._avcTrack, samples = track.samples;
avcSample = samples[samples.length - 1];
}
if (avcSample) {
let units = avcSample.units;
lastUnit = units[units.length - 1];
}
return lastUnit;
}
_parseAVCNALu (array) {
let i = 0, len = array.byteLength, value, overflow, track = this._avcTrack, state = track.naluState || 0, lastState = state;
let units = [], unit, unitType, lastUnitStart = -1, lastUnitType;
// logger.log('PES:' + Hex.hexDump(array));
if (state === -1) {
// special use case where we found 3 or 4-byte start codes exactly at the end of previous PES packet
lastUnitStart = 0;
// NALu type is value read from offset 0
lastUnitType = array[0] & 0x1f;
state = 0;
i = 1;
}
while (i < len) {
value = array[i++];
// optimization. state 0 and 1 are the predominant case. let's handle them outside of the switch/case
if (!state) {
state = value ? 0 : 1;
continue;
}
if (state === 1) {
state = value ? 0 : 2;
continue;
}
// here we have state either equal to 2 or 3
if (!value) {
state = 3;
} else if (value === 1) {
if (lastUnitStart >= 0) {
unit = { data: array.subarray(lastUnitStart, i - state - 1), type: lastUnitType };
// logger.log('pushing NALU, type/size:' + unit.type + '/' + unit.data.byteLength);
units.push(unit);
} else {
// lastUnitStart is undefined => this is the first start code found in this PES packet
// first check if start code delimiter is overlapping between 2 PES packets,
// ie it started in last packet (lastState not zero)
// and ended at the beginning of this PES packet (i <= 4 - lastState)
let lastUnit = this._getLastNalUnit();
if (lastUnit) {
if (lastState && (i <= 4 - lastState)) {
// start delimiter overlapping between PES packets
// strip start delimiter bytes from the end of last NAL unit
// check if lastUnit had a state different from zero
if (lastUnit.state) {
// strip last bytes
lastUnit.data = lastUnit.data.subarray(0, lastUnit.data.byteLength - lastState);
}
}
// If NAL units are not starting right at the beginning of the PES packet, push preceding data into previous NAL unit.
overflow = i - state - 1;
if (overflow > 0) {
// logger.log('first NALU found with overflow:' + overflow);
let tmp = new Uint8Array(lastUnit.data.byteLength + overflow);
tmp.set(lastUnit.data, 0);
tmp.set(array.subarray(0, overflow), lastUnit.data.byteLength);
lastUnit.data = tmp;
}
}
}
// check if we can read unit type
if (i < len) {
unitType = array[i] & 0x1f;
// logger.log('find NALU @ offset:' + i + ',type:' + unitType);
lastUnitStart = i;
lastUnitType = unitType;
state = 0;
} else {
// not enough byte to read unit type. let's read it on next PES parsing
state = -1;
}
} else {
state = 0;
}
}
if (lastUnitStart >= 0 && state >= 0) {
unit = { data: array.subarray(lastUnitStart, len), type: lastUnitType, state: state };
units.push(unit);
// logger.log('pushing NALU, type/size/state:' + unit.type + '/' + unit.data.byteLength + '/' + state);
}
// no NALu found
if (units.length === 0) {
// append pes.data to previous NAL unit
let lastUnit = this._getLastNalUnit();
if (lastUnit) {
let tmp = new Uint8Array(lastUnit.data.byteLength + array.byteLength);
tmp.set(lastUnit.data, 0);
tmp.set(array, lastUnit.data.byteLength);
lastUnit.data = tmp;
}
}
track.naluState = state;
return units;
}
/**
* remove Emulation Prevention bytes from a RBSP
*/
discardEPB (data) {
let length = data.byteLength,
EPBPositions = [],
i = 1,
newLength, newData;
// Find all `Emulation Prevention Bytes`
while (i < length - 2) {
if (data[i] === 0 &&
data[i + 1] === 0 &&
data[i + 2] === 0x03) {
EPBPositions.push(i + 2);
i += 2;
} else {
i++;
}
}
// If no Emulation Prevention Bytes were found just return the original
// array
if (EPBPositions.length === 0) {
return data;
}
// Create a new array to hold the NAL unit data
newLength = length - EPBPositions.length;
newData = new Uint8Array(newLength);
let sourceIndex = 0;
for (i = 0; i < newLength; sourceIndex++, i++) {
if (sourceIndex === EPBPositions[0]) {
// Skip this byte
sourceIndex++;
// Remove this position index
EPBPositions.shift();
}
newData[i] = data[sourceIndex];
}
return newData;
}
_parseAACPES (pes) {
let track = this._audioTrack,
data = pes.data,
pts = pes.pts,
startOffset = 0,
aacOverFlow = this.aacOverFlow,
aacLastPTS = this.aacLastPTS,
frameDuration, frameIndex, offset, stamp, len;
if (aacOverFlow) {
let tmp = new Uint8Array(aacOverFlow.byteLength + data.byteLength);
tmp.set(aacOverFlow, 0);
tmp.set(data, aacOverFlow.byteLength);
// logger.log(`AAC: append overflowing ${aacOverFlow.byteLength} bytes to beginning of new PES`);
data = tmp;
}
// look for ADTS header (0xFFFx)
for (offset = startOffset, len = data.length; offset < len - 1; offset++) {
if (ADTS.isHeader(data, offset)) {
break;
}
}
// if ADTS header does not start straight from the beginning of the PES payload, raise an error
if (offset) {
let reason, fatal;
if (offset < len - 1) {
reason = `AAC PES did not start with ADTS header,offset:${offset}`;
fatal = false;
} else {
reason = 'no ADTS header found in AAC PES';
fatal = true;
}
logger.warn(`parsing error:${reason}`);
this.observer.trigger(Event.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_PARSING_ERROR, fatal: fatal, reason: reason });
if (fatal) {
return;
}
}
ADTS.initTrackConfig(track, this.observer, data, offset, this.audioCodec);
frameIndex = 0;
frameDuration = ADTS.getFrameDuration(track.samplerate);
// if last AAC frame is overflowing, we should ensure timestamps are contiguous:
// first sample PTS should be equal to last sample PTS + frameDuration
if (aacOverFlow && aacLastPTS) {
let newPTS = aacLastPTS + frameDuration;
if (Math.abs(newPTS - pts) > 1) {
logger.log(`AAC: align PTS for overlapping frames by ${Math.round((newPTS - pts) / 90)}`);
pts = newPTS;
}
}
// scan for aac samples
while (offset < len) {
if (ADTS.isHeader(data, offset) && (offset + 5) < len) {
let frame = ADTS.appendFrame(track, data, offset, pts, frameIndex);
if (frame) {
// logger.log(`${Math.round(frame.sample.pts)} : AAC`);
offset += frame.length;
stamp = frame.sample.pts;
frameIndex++;
} else {
// logger.log('Unable to parse AAC frame');
break;
}
} else {
// nothing found, keep looking
offset++;
}
}
if (offset < len) {
aacOverFlow = data.subarray(offset, len);
// logger.log(`AAC: overflow detected:${len-offset}`);
} else {
aacOverFlow = null;
}
this.aacOverFlow = aacOverFlow;
this.aacLastPTS = stamp;
}
_parseMPEGPES (pes) {
let data = pes.data;
let length = data.length;
let frameIndex = 0;
let offset = 0;
let pts = pes.pts;
while (offset < length) {
if (MpegAudio.isHeader(data, offset)) {
let frame = MpegAudio.appendFrame(this._audioTrack, data, offset, pts, frameIndex);
if (frame) {
offset += frame.length;
frameIndex++;
} else {
// logger.log('Unable to parse Mpeg audio frame');
break;
}
} else {
// nothing found, keep looking
offset++;
}
}
}
_parseID3PES (pes) {
this._id3Track.samples.push(pes);
}
}
export default TSDemuxer;